
www.manaraa.com

E�ective Erasure Codes for Reliable ComputerCommunication ProtocolsLuigi Rizzo�yDip. di Ingegneria dell'Informazione, Universit�a di Pisavia Diotisalvi 2 { 56126 Pisa (Italy) { email: l.rizzo@iet.unipi.itAbstractReliable communication protocols require that all the intended recipients of a messagereceive the message intact. Automatic Repeat reQuest (ARQ) techniques are used in unicastprotocols, but they do not scale well to multicast protocols with large groups of receivers,since segment losses tend to become uncorrelated thus greatly reducing the e�ectiveness ofretransmissions. In such cases, Forward Error Correction (FEC) techniques can be used,consisting in the transmission of redundant packets (based on error correcting codes) toallow the receivers to recover from independent packet losses.Despite the widespread use of error correcting codes in many �elds of information process-ing, and a general consensus on the usefulness of FEC techniques within some of the Internetprotocols, very few actual implementations exist of the latter. This probably derives from thedi�erent types of applications, and from concerns related to the complexity of implementingsuch codes in software. To �ll this gap, in this paper we provide a very basic descriptionof erasure codes, describe an implementation of a simple but very exible erasure code tobe used in network protocols, and discuss its performance and possible applications. Ourcode is based on Vandermonde matrices computed over GF (pr), can be implemented verye�ciently on common microprocessors, and is suited to a number of di�erent applications,which are briey discussed in the paper. An implementation of the erasure code shown inthis paper is available from the author, and is able to encode/decode data at speeds up toseveral MB/s running on a Pentium 133.Keywords: Reliable multicast, FEC, erasure codes.1 IntroductionComputer communications generally require reliable1 data transfers among the communicatingparties. This is usually achieved by implementing reliability at di�erent levels in the protocol�This paper appears on ACM Computer Communication Review, Vol.27, n.2, Apr.97, pp.24-36.yThe work described in this paper has been supported in part by the Commission of European Communities,Esprit Project LTR 20422 { \Moby Dick, The Mobile Digital Companion (MOBYDICK)", and in part by theMinistero dell'Universit�a e della Ricerca Scienti�ca e Tecnologica of Italy.1Throughout this paper, with reliable we mean that data must be transferred with no errors and no losses.



www.manaraa.com

stack, either on a link-by-link basis (e.g. at the link layer), or using end-to-end protocols at thetransport layer (such as TCP), or directly in the application.ARQ (Automatic Repeat reQuest) techniques are generally used in unicast protocols: miss-ing packets are retransmitted upon timeouts or explicit requests from the receiver. Whenthe bandwidth-delay product approaches the sender's window, ARQ might result in reducedthroughput. Also, in multicast communication protocols ARQ might be highly ine�cient be-cause of uncorrelated losses at di�erent (groups of) receivers.In these cases, Forward Error Correction (FEC) techniques, possibly combined with ARQ,become useful: the sender prevents losses by transmitting some amount of redundant informa-tion, which allow the reconstruction of missing data at the receiver without further interactions.Besides reducing the time needed to recover the missing packets, such an approach generallysimpli�es both the sender and the receiver since it might render a feedback channel unnecessary;also, the technique is attractive for multicast applications since di�erent loss patterns can berecovered from using the same set of transmitted data.FEC techniques are generally based on the use of error detection and correction codes. Thesecodes have been studied for a long time and are widely used in many �elds of information process-ing, particularly in telecommunications systems. In the context of computer communications,error detection is generally provided by the lower protocol layers which use checksums (e.g.Cyclic Redundancy Checksums (CRCs)) to discard corrupted packets. Error correcting codesare also used in special cases, e.g. in modems, wireless or otherwise noisy links, in order to makethe residual error rate comparable to that of dedicated, wired connections. After such link layerprocessing, the upper protocol layers have mainly to deal with erasures, i.e. missing packetsin a stream. Erasures originate from uncorrectable errors at the link layer (but those are notfrequent with properly designed and working hardware), or, more frequently, from congestion inthe network which causes otherwise valid packets to be dropped due to lack of bu�ers. Erasuresare easier to deal with than errors since the exact position of missing data is known.Recently, many applications have been developed which use multicast communication. Someof these applications, e.g. audio or videoconferencing tools, tolerate segment losses with a rel-atively graceful degradation of performance, since data blocks are often independent of eachother and have a limited lifetime. Others, such as electronic whiteboards or di�usion of circularinformation over the network (\electronic newspapers", distribution of software, etc), have in-stead more strict requirements and require reliable delivery of all data. Thus, they would greatlybene�t from an increased reliability in the communication.Despite an increased need, and a general consensus on their usefulness [4, 10, 14, 19] thereare very few Internet protocols which use FEC techniques. This is possibly due to the existenceof a gap between the telecommunications world, where FEC techniques have been �rst studiedand developed, and the computer communications world. In the former, the interest is focusedon error correcting codes, operating on relatively short strings of bits and implemented ondedicated hardware; in the latter, erasure codes are needed, which must be able to operateon packet-sized data objects, and need to be implemented e�ciently in software using general-purpose processors.In this paper we try to �ll this gap by providing a basic description of the principles of



www.manaraa.com

operation of erasure codes, presenting an erasure code which is easy to understand, exible ande�cient to implement even on inexpensive architectures, and discussing various issues relatedto its performance and possible applications. The paper is structured as follows: Section 2gives a brief introduction to the principles of operation of erasure codes. Section 3 describesour code and discusses some issues related to its implementation on general purpose processors.Finally, Section 4 briey shows a number of possible applications in computer communicationprotocols, both in unicast and multicast protocols. A portable C implementation of the erasurecode described in this paper is available from the author [16].2 An introduction to erasure codesIn this section we give a brief introduction to the principle of operation of erasure codes. For amore in-depth discussion of the problem the interested reader is referred to the copious literatureon the subject [1, 11, 15, 20]. In this paper we only deal with the so-called linear block codes asthey are simple and appropriate for the applications of our interest.The key idea behind erasure codes is that k blocks of source data are encoded at the senderto produce n blocks of encoded data, in such a way that any subset of k encoded blocks su�cesto reconstruct the source data. Such a code is called an (n; k) code and allows the receiverto recover from up to n � k losses in a group of n encoded blocks. Figure 1 gives a graphicalrepresentation of the encoding and decoding process.
k’ >= k

Encoder

source data

k

n

Decoder

reconstructed
data

encoded data received data

kFigure 1: A graphical representation of the encoding/decoding process.Within the telecommunications world, a block is usually made of a small number of bits. Incomputer communications, the \quantum" of information is generally much larger { one packet



www.manaraa.com

of data, often amounting to hundreds or thousands of bits. This changes somewhat the way anerasure code can be implemented. However, in the following discussion we will assume that ablock is a single data item which can be operated on with simple arithmetic operations. Largepackets can be split into multiple data items, and the encoding/decoding process is applied bytaking one data item per packet.An interesting class of erasure codes is that of linear codes, so called because they can beanalyzed using the properties of linear algebra. Let x = x0 : : :xk�1 be the source data, G ann� k matrix, then an (n; k) linear code can be represented byy = Gxfor a proper de�nition of the matrix G. Assuming that k components of y are available at thereceiver, source data can be reconstructed by using the k equations corresponding to the knowncomponents of y. We call G0 the k � k matrix representing these equations (Figure 2). This ofcourse is only possible if these equations are linearly independent, and, in the general case, thisholds if any k � k matrix extracted from G is invertible.If the encoded blocks include a verbatim copy of the source blocks, the code is called asystematic code. This corresponds to including the identity matrix Ik in G. The advantage ofa systematic code is that it simpli�es the reconstruction of the source data in case one expectsvery few losses.
1 0
0 1

0 0

k

Gy x

n

0
0

1

Decoder

...
...

Encoder

1 0
0 1

0 0

k

Gy x

n

1

0
0

Figure 2: The encoding/decoding process in matrix form, for a systematic code (the top k rowsof G constitute the identity matrix Ik). y0 and G0 correspond to the grey areas of the vectorand matrix on the right.2.1 The generator matrixG is called the generator matrix of the code, because any valid y is a linear combination ofcolumns of G. Since G is an n � k matrix with rank k, any subset of k encoded blocks should



www.manaraa.com

convey information on all the k source blocks. As a consequence, each column of G can haveat most k � 1 zero elements. In the case of a systematic code G contains the identity matrixIk, which consumes all zero elements. Thus the remaining rows of the matrix must all containnon-zero elements.Strictly speaking, the reconstruction process needs some additional information { namely,the identity of the various blocks { to reconstruct the source data. However, this information isgenerally derived by other means and thus might not need to be transmitted explicitly. Also,in the case of computer communications, this additional information has a negligible size whencompared to the size of a packet.There is however another source of overhead which cannot be neglected, and this is theprecision used for computations. If each xi is represented using b bits, representing the yi'srequires more bits if ordinary arithmetic is used. In fact, if each coe�cient gij of G is representedon b0 bits, the yi's need b+b0+dlog2 ke bits to be represented without loss of precision. That is asigni�cant overhead, since those excess bits must be transmitted to reconstruct the source data.Rounding or truncating the representation of the yi's would prevent a correct reconstruction ofthe source data.2.2 Avoiding roundings: computations in �nite �eldsLuckily the expansion of data can be overcome by working in a �nite �eld. Roughly speaking,a �eld is a set in which we can add, subtract, multiply and divide, in much the same way weare used to work on integers (the interested reader is referred to some textbook on algebra [6]or coding theory (e.g. [1, Ch.2 and Ch.4]), where a more formal presentation of �nite �elds isprovided; a relatively simple-to-follow presentation is also given in [2, Chap.2]). A �eld is closedunder addition and multiplication, which means that the result of sums and products of �eldelements are still �eld elements. A �nite �eld is characterized by having a �nite number ofelements. Most of the properties of linear algebra apply to �nite �elds as well.The main advantage of using a �nite �eld, for our purposes, lies in the closure propertywhich allows us to make exact computations on �eld elements without requiring more bits torepresent the results. In order to work on a �nite �eld, we need to map our data elements into�eld elements, operate upon them according to the rules of the �eld, and then apply the inversemapping to reconstruct the desired results.2.2.1 Prime �eldsFinite �elds have been shown to exist with q = pr elements, where p is a prime number. Fieldswith p elements, with p prime, are called prime �elds or GF (p), where GF stands for GaloisField. Operating in a prime �eld is relatively simple, since GF (p) is the set of integers from 0 top� 1 under the operations of addition and multiplication modulo p. From the point of view ofa software implementation, there are two minor di�culties in using a prime �eld: �rst, with theexception of p = 2, �eld elements require dlog2 pe > log2 p bits to be represented. This causes aslight ine�ciency in the encoding of data, and possibly an even larger ine�ciency in operatingon these numbers since the operand sizes might not match the word size of the processor. The



www.manaraa.com

second problem lies in the need of a modulo operation on sums and, especially, multiplications.The modulo is an expensive operation since it requires a division. Both problems, though, canbe minimized if p = 2m + 1.2.2.2 Extension �eldsFields with q = pr elements, with p prime and r > 1, are called extension �elds or GF (pr).The sum and product in extension �elds are not done by taking results modulo q. Rather, �eldelements can be considered as polynomials of degree r� 1 with coe�cients in GF (p). The sumoperation is just the sum between coe�cients, modulo p; the product is the product betweenpolynomials, computed modulo an irreducible polynomial (i.e. one without divisors in GF (pr))of degree r, and with coe�cients reduced modulo p.Despite the apparent complexity, operations on extension �elds can become extremely simplein the case of p = 2. In this case, elements of GF (2r) require exactly r bits to be represented, aproperty which simpli�es the handling of data. Sum and subtraction become the same operation(a bit-by-bit sum modulo 2), which is simply implemented with an exclusive OR.2.2.3 Multiplications and divisionsAn interesting property of prime or extension �elds is that there exist at least one specialelement, usually denoted by �, whose powers generate all non-zero elements of the �eld. As anexample, a generator for GF (5) is 2, whose powers (starting from 20) are 1; 2; 4; 3; 1; : : :. Powersof � repeat with a period of length q � 1, hence �q�1 = �0 = 1.This property has a direct consequence on the implementation of multiplication and division.In fact, we can express any non-zero �eld element x as x = �kx . kx can be considered as\logarithm" of x, and multiplication and division can be computed using logarithms, as follows:xy = �jkx+ky jq�1 ; 1x = �q�1�kxwhere jajb stands for \a modulo b". If the number of �eld elements not too large, tables can bebuilt o� line to provide the \logarithm", the \exponential" and the multiplicative inverse of eachnon-zero �eld element. In some cases, it can be convenient to provide a table for multiplicationsas well. Using the above techniques, operations in extension �elds with p = 2 can be extremelyfast and simple to implement.2.3 Data recoveryRecovery of original data is possible by solving the linear systemy0 = G0x ! x = G0�1y0where x is the source data and y0 is a subset of k components of y available at the receiver.Matrix G0 is the subset of rows from G corresponding to the components of y0.It is useful to solve the problem in two steps: �rstG0 is inverted, then x = G0�1y0 is computed.This is because the cost of matrix inversion can be amortized over all the elements which arecontained in a packet, becoming negligible in many cases.



www.manaraa.com

The inversion of G0 can be done with the usual techniques, by replacing division with mul-tiplication by the inverse �eld element. The cost of inversion is O(kl2), where l � min(k; n� k)is the number of data blocks which must be recovered (very small constants are involved in ouruse of the O() notation).Reconstructing the l missing data blocks has a total cost of O(lk) operations. Providedsu�cient resources, it is not impossible to reconstruct the missing data in constant time, althoughthis would be pointless since just receiving the data requires O(k) time. Many implementationsof error correcting codes use dedicated hardware (either hardwired, or in the form of a dedicatedprocessor) to perform data reconstruction with the required speed.3 An erasure code based on Vandermonde matricesA simple yet e�ective way to build the generator matrix, G, consists in using coe�cients of theform gij = xj�1iwhere the xi's are elements of GF (pr). Such matrices are commonly known as Vandermondematrices, and their determinant is Yi;j=1:::k;i<j(xj � xi)If all xi's are di�erent, the matrix has a non-null determinant and it is invertible. Providedq > k and all xi 6= 0, up to q � 1 rows can be constructed, which satisfy the properties requiredfor G. Such matrices can be extended with the identity matrix Ik to obtain a suitable generatorfor a systematic code.Note that there are some special cases of the above code which are of trivial implementation.As an example, an (n; 1) code simply requires the same data to be retransmitted multiple times,hence there is no overhead involved in the encoding. Another simple case is that of a systematic(k + 1; k) code, where the only redundant block is simply the sum (as de�ned in GF (pr)) ofthe k source data blocks, i.e. a simple XOR in case p = 2. Unfortunately, an (n; 1) code has alow rate and is relatively ine�cient compared to codes with higher values of k. Conversely, a(k + 1; k) code is only useful for small amount of losses. So, in many cases there is a real needfor codes with k > 1 and n� k > 1.We have written a portable C implementation of the above code [16] to determine its per-formance when used within network protocols. Our code supports p = 2, any r in the range2 : : :16, and arbitrary packet sizes. The maximum e�ciency can be achieved using r = 8, sincethis allows most operations to be executed using table lookups. The generator matrix has theform indicated above, with xi = �i�1. We can build up to 2n� 1 rows in this way, which makesit possible to construct codes up to n = 2(2r � 1); k = 2r � 1. In our experiments we have useda packet size of 1024 bytes.



www.manaraa.com

3.1 PerformanceUsing a systematic code, the encoder takes groups of k source data blocks to produce n � kredundant blocks. This means that every source data block is used n � k times, and we canexpect the encoding time to be a linear function of n � k. It is probably more practical tomeasure the time to produce a single data block, which depends on the single parameter k. Itis easy to derive that this time is (for su�ciently large packets) linearly dependent on k, hencewe can approximate it as encoding time = kcewhere the constant ce depends on the speed of the system. The above relation only tells us howfast we can build redundant packets. If we use a systematic code, sending k blocks of sourcedata requires the actual computation of n � k redundant blocks. Thus, the actual encodingspeed becomes encoding speed = cen� kNote that the maximum loss rate that we can sustain is n�kn , which means that, for a givenmaximum loss rate, the encoding speed also decreases with n.Decoding costs depend on l � min(k; n� k), the actual number of missing source blocks.Although matrix inversion has a cost O(kl2), this cost is amortized over the size s of a packet;we have found that, for reasonably sized packets (say above 256 bytes), and k up to 32, the costof matrix inversion becomes negligible compared to the cost of packet reconstruction, which isO(lk). Also for the reconstruction process it is more practical to measure the overall cost perreconstructed block, which is similar to the encoding cost. Then, the decoding speed can bewritten as decoding speed = cdlwith the constant cd slightly smaller than ce because of some additional overheads (includingthe already mentioned matrix inversion).The accuracy of the above approximations has been tested on our implementation usinga packet size of 1024 bytes, and di�erent values of k and l = n � k, as shown in Table 1(more detailed performance data can be found in [17]). Running times have been determinedusing a Pentium 133 running FreeBSD, using our code compiled with gcc -O2 and no specialoptimizations.These experimental results show that the approximation is su�ciently accurate. Also, thevalues of ce and cd are su�ciently high to allow these codes to be used in a wide range ofapplications, depending on the actual values of k and l = n� k. The reader will notice that, fora given k, larger values of l (which we have set equal to n� k) yield slightly better performanceboth in encoding and decoding. On the encoder side this is exclusively due to the e�ect ofcaching: since the same source data are used several times to compute multiple redundant blocks,successive computations �nd the operands already in cache hence running slightly faster. Forthe decoder, this derives from the amortization of matrix inversion costs over a larger number



www.manaraa.com

Encoding Decodingk time/pkt ce l time/pkt cd�s MB/s �s MB/s8 840 9.53 1 1230 6.508 773 10.34 7 871 9.1916 1553 10.30 2 1996 8.0216 1500 10.69 14 1754 9.1232 3012 10.62 4 3623 8.8332 2967 10.78 28 3533 9.06Table 1: Encoding/decoding times for di�erent values of k and n� k on a Pentium 133 runningFreeBSDof reconstructed blocks2.Note that in many cases data exchanged over a network connection are already subjectto a small number of copies (e.g. from kernel to user space) and accesses to compute check-sums. Thus, part of the overhead for reconstructing missing data might be amortized by usingintegrated layer processing techniques [3].3.2 DiscussionThe above results show that a software implementation of erasure codes is computationallyexpensive, but on today's machines they can be safely a�orded with little overhead for low-to-medium speed applications, up to the 100 KB/s range. This covers a wide range of real-timeapplications including network whiteboards and audio/video conferencing tools, and can evenbe used to support browsing-type applications. More bandwidth-intensive applications can stillmake good use of software FEC techniques, with a careful tuning of operating parameters(speci�cally, n � k in our discussion) or provided su�cient processing power is available. Thecurrent trend of increasing processing speeds, and the availability of Symmetric MultiProcessor(SMP) desktop computers suggest that, as time goes by, there will likely be plenty of processingpower to support these computations (we have measured values for cd and ce in the 30MB/srange on faster machines based on PentiumPRO 200 and UltraSparc processors). Finally, notethat in many cases both encoding and decoding can be done o�ine, so many non-real-timeapplication can use this feature and apply FEC techniques while communicating at much higherspeeds than their encoding/decoding ability.2and a small overhead existing in our implementation for non reconstructed blocks which are still copied inthe reconstruction process



www.manaraa.com

4 ApplicationsDepending on the application, ARQ and FEC can be used separately or together, and in thelatter case either on di�erent layers or in a combined fashion. In general, there is a tradeo�between the improved reliability of FEC-based protocols and their higher computational costs,and this tradeo� often dictates the choice.It is beyond the scope of this paper to make an in-depth analysis of the relative advantagesof FEC, ARQ or combinations thereof. Such studies are present in some papers in the literature(see, for example, [7, 12, 21]). In this section we limit our interest to computer networks, andpresent a partial list of applications which could bene�t from the use of an encoding techniquesuch as the one described in this paper. The bandwidth, reliability and congestion controlrequirements of these applications vary widely.Losses in computer networks mainly depend on congestion, and congestion is the networkanalogue of noise (or interference) in telecommunications systems. Hence, FEC techniques basedon a redundant encoding give us similar types of advantages, namely increased resilience to noiseand interference. Depending on the amount of redundancy, the residual packet loss rate can bemade arbitrarily small, to the point that reliable transfers can be achieved without the need fora feedback channel. Or, one might just be interested in a reduction of the residual loss rate, sothat performance is generally improved but feedback from the receiver is still needed.4.1 Unicast applicationsIn unicast applications, reducing the amount of feedback necessary for reliable delivery is gen-erally useful to overcome the high delays incurred with ARQ techniques in the presence of longdelay paths. Also, these techniques can be used in the presence of asymmetrical communicationlinks. Two examples are the following:� forward error recovery on long delay paths. TCP communications over long fat pipessu�er badly from random packet losses because of the time needed to get feedback fromthe receiver. Selective acknowledgements [13] can help improve the situation but onlyafter the transmit window has opened wide enough, which is generally not true duringconnection startup and/or after an even short sequence of lost packets. To overcome thisproblem it might be useful to allocate (possibly adaptively, depending on the actual lossrate) a small fraction of the bandwidth to send redundant packets. The sender couldcompute a small number (1-2) of redundant packets on every group of k packets, andsend these packets at the end of the group. In case of a single or double packet loss thereceiver could defer the transmission of the dup ack until the expiration of a (possiblyfast) timeout3. If, by that time, the group is complete and some of the redundant packetsare available, then the missing one(s) can be recovered without the need for an explicitretransmission (this this would be equivalent to a fast retransmit). Otherwise, the usualcongestion avoidance techniques can be adopted. A variant of RFC1323 timestamps[5]3alternatively, the sender could delay retransmissions in the hope that the lost packet can be recovered usingthe redundant packets.



www.manaraa.com

can be used to assign sequence numbers to packets thus allowing the receiver to determinethe identity of received packets and perform the reconstruction process (TCP sequencenumbers are not adequate for the purpose).� power saving in communication with mobile equipment Mobile devices usuallyadopt wireless communication and have a limited power budget. This results in the needto reduce the number of transmissions. A redundant encoding of data can practicallyremove the need for acknowledgements while still allowing for reliable communications. Asan example, a mobile browser can limit its transmissions to requests only, while incomingresponses need not to be explicitly ACKed (such as it is done currently with HTTP overTCP) unless severe losses occur.4.2 Multicast applicationsThe main �eld of application of redundant encoding is probably in multicast applications. Here,multiple receivers can experience losses on di�erent packets, and insuring reliability via individualrepairs might become extremely expensive. A second advantage derives from the aforementionedreduced need for handling a feedback channel from receivers. Reducing the amount of feedbackis an extremely useful feature since it allows protocols to scale well to large numbers of receivers.Applications not depending on a reliable delivery can still bene�t from a redundant en-coding, because an improved reliability in the transmission allows for more aggressive codingtechniques (e.g. compression) which in turn might result in a more e�ective usage of the availablebandwidth.A list of multicast applications which would bene�t from the use of a redundant encodingfollows.� videoconferencing tools. A redundant encoding with small values of k and n � kcan provide an e�ective protection against losses in videoconferencing applications. Byreducing the e�ective loss rate one can even use a more e�cient encoding technique (e.g.fewer \I" frames in MPEG video) which provide a further reduction in the bandwidth.The PET [9] group at Berkeley has done something similar for MPEG video.� reliable multicast for groupware. A redundant encoding can be used to greatly reducethe need for retransmissions (\repairs") in applications needing a reliable multicast. Onesuch example is given by the \network whiteboard" type of applications, where reliabletransfer is needed for objects such as Postscript �les or compound drawings.� one-to-many �le transfer on LANs. Classrooms using workstations often use thispattern of access to �les, either in the booting process (all nodes download the kernel orstartup �les from a server) or during classes (where students download almost simultane-ously the same documents or applications from a centralized server). While these problemscan be partly overcome by preloading the software, centralized management is much moreconvenient and the use of a multicast-FTP type of application can make the system muchmore scalable.



www.manaraa.com

� one-to-many �le transfer on Wide Area Networks. There are several examplesof such an application. Some popular Web servers are likely to have many simultaneoustransfers of the same, large, piece of information (e.g. popular software packages). Thesame applies to, say, a newspaper which is distributed electronically over the network, orvideo-on-demand type of applications. Unlike local area multicast-FTP, receivers connectto the server at di�erent times, and have di�erent bandwidths and loss rates, and signi�cantcongestion control issues exist [8]. By using the encoding presented here, source data can beencoded and transmitted with a very large redundancy (n >> k). Using such a technique,a receiver basically needs only to collect a su�cient number (k) of packets per block toreconstruct the original �le. The RMDP protocol [18] has been designed and implementedby the author using the above technique.5 AcknowledgementsThe author wishes to thank Phil Karn for discussions which led to the development of the codedescribed in this paper, and an anonymous referee for comments on an early version of thispaper.References[1] R.E.Blahut, \Theory and Practice of Error Control Codes" Addison Wesley, MA, 1984[2] R.E. Blahut, \Fast Algorithms for Digital Signal Processing", Addison Wesley, 1987[3] D.Clark, D.Tennenhouse, \Architectural Considerations for a New Generation of Proto-cols", ACM SIGCOMM'90, Sept. 1990, Philadelphia, pp.200-208.[4] C.Huitema, \The Case for packet level FEC", Proc. 5th Workshop on Protocols for HighSpeed Networks, pp.109-120, Sophia Antipolis, France, Oct.1996.[5] V. Jacobson, R. Braden, D. Borman, \RFC1323: TCP Extensions for High Performance",May 1992[6] S.Lang, \Algebra", Addison-Wesley, 1984[7] H.Liu, M. El Zarki, \Delay Bounded Type-II Hybrid ARQ for Video Transmission overWireless Networks", Proc. Conference on Information Sciences and Systems, Princeton,NJ, March 1996[8] S. McCanne, V. Jacobson, and M. Vetterli, \Receiver-driven Layered Multicast", ACMSIGCOMM'96, August 1996, Stanford, CA, pp.1-14.Available as ftp://ftp.ee.lbl.gov/papers/mccanne-sigcomm96.ps.gz[9] A.Albanese, J.Bloemer, J.Edmonds, M.Luby, M.Sudan, \Priority Encoding Transmission",35th Annual Symposium on Foundations of Computer Science, IEEE Computer SciencePress, 1994.



www.manaraa.com

[10] A. McAuley, \Reliable Broadband Communication Using A Burst Erasure CorrectingCode", Proc. SIGCOMM '90.[11] S.Lin, D.J.Costello, \Error Control Coding: Fundamentals and Applications", PrenticeHall, 1983.[12] S.Lin, D.J.Costello, M.Miller, \Automatic-repeat-request error-control schemes", IEEEComm. Magazine, v.22,n.12, pp.5-17, Dec.1984[13] M. Mathis, J. Mahdavi, S. Floyd, A. Romanow, \RFC2018: TCP Selective Acknowledge-ment Option", Oct.1996.[14] Jorg Nonnenmacher, E.W.Biersack, \Reliable Multicast: Where to use Forward Error Cor-rection", Proc. 5th Workshop on Protocols for High Speed Networks, pp.134-148, SophiaAntipolis, France, Oct.1996.Available as http://www.eurecom.fr/~nonnen/mypages/FECgain.ps.gz[15] V. Pless, \Introduction to Error-Correcting Codes", 2nd ed., Wiley, 1989.[16] L.Rizzo, Sources for an erasure code based on Vandermonde matrices.Available at http://www.iet.unipi.it/~luigi/vdm.tgz[17] L.Rizzo, \On the feasibility of software FEC", DEIT Technical Report LR-970131. Availableas http://www.iet.unipi.it/~luigi/softfec.ps[18] L.Rizzo, L.Vicisano, \A Reliable Multicast data Distribution Protocol basedon software FEC techniques", DEIT Technical Report LR-970116. Available ashttp://www.iet.unipi.it/~luigi/rmdp.ps[19] N.Shacham, P.McKenney, \Packet recovery in high-speed networks using coding and bu�ermanagement", Proc. IEEE Infocom'90, San Francisco, CA, pp.124-131, May 1990.[20] J.H. van Lint, \Introduction to Coding Theory", 2nd ed., Springer-Verlag, 1992.[21] Y. Wang, S.Lin, \A modi�ed selective-repeat type-II hybrid ARQ system and its perfor-mance analysis", IEEE Trans. Comm. v.COM-31, n.5, pp.593-608, May 1983


